Erythropoietin ameliorates podocyte injury in advanced diabetic nephropathy in the db/db mouse.
نویسندگان
چکیده
Podocyte damage and accumulation of advanced glycation end products (AGEs) are characteristics of diabetic nephropathy (DN). The pathophysiology of AGE-challenged podocytes, such as hypertrophy, apoptosis, and reduced cell migration, is closely related to the induction of the cell cycle inhibitor p27(Kip1) and to the inhibition of neuropilin 1 (NRP1). We have previously demonstrated that treatment with erythropoietin is associated with protective effects for podocytes in vitro. db/db mice with overt DN aged 15-16 wk were treated with either placebo, epoetin-β, or continuous erythropoietin receptor activator (CERA) for 2 wk. db/db mice compared with nondiabetic db/m control mice revealed the expected increases in body weight, blood glucose, albumin-to-creatinine ratio, and AGE accumulation. Whereas there were no differences in body weight, hyperglycemia and AGEs were observed among diabetic mice that received epoetin-β compared with CERA and placebo treatment, indicating that epoetin-β/CERA treatment does not interfere with the development of diabetes in this model. However, the albumin-to-creatinine ratio was significantly lower in db/db mice treated with epoetin-β or CERA. Furthermore, kidney weights in db/db mice were increased compared with db/m control mice, indicating renal hypertrophy, whereas the increase in renal weight in epoetin-β- or CERA-treated db/db mice was significantly lower than in placebo-treated control mice. Induction of p27(Kip1) and suppression of NRP1 were significantly reduced in the epoetin-β treatment group versus the CERA treatment group. Furthermore, erythropoietin treatment diminished the diabetes-induced podocyte loss. Together, independently from hematopoetic effects, epoetin-β or CERA treatment was associated with protective changes in DN, especially that NRP1 and p27(Kip1) expressions as well as numbers of podocytes returned to normal levels. Our data show, for the first time, that medication of overt DN with erythropoietin for a short time can ameliorate albuminuria and podocyte loss.
منابع مشابه
Erythropoietin ameliorates podocyte injury in advanced diabetic
26 Podocyte damage and accumulation of advanced glycation end-products (AGEs) are 27 characteristic of diabetic nephropathy (DN). The pathophysiology of AGE-challenged 28 podocytes such as hypertrophy, apoptosis and reduced cell migration is closely 29 related to the induction of cell cycle inhibitor p27 and to the inhibition of neuropilin 30 1 (NRP1). We previously demonstrated that treatment ...
متن کاملSoluble Flt-1 gene therapy ameliorates albuminuria but accelerates tubulointerstitial injury in diabetic mice.
VEGF is recognized as a major mediator in the development of diabetic nephropathy. Soluble Flt-1 (sFlt-1) is the endogenous inhibitor of VEGF, and recently genetic overexpression of sFlt-1 in the podocyte was shown to be protective in murine diabetic nephropathy. In this study, we performed a translational study to determine whether an intramuscular gene transfer of sFlt-1 can prevent the progr...
متن کاملThe Extract of Litsea japonica Reduced the Development of Diabetic Nephropathy via the Inhibition of Advanced Glycation End Products Accumulation in db/db Mice
Increasing evidence indicates that advanced glycation end products (AGEs) contribute to the pathogenesis of diabetic nephropathy. The aim of this study was to investigate the protective effect of L. japonica extract (LJE) against renal damage in the db/db mouse. LJE (100 or 250 mg/kg per day) was given to diabetic mice for 12 weeks. Body weight, blood glucose levels, glycated hemoglobin (HbA1c)...
متن کاملSilencing of Histone Deacetylase 9 Expression in Podocytes Attenuates Kidney Injury in Diabetic Nephropathy
Podocyte dysfunction is important in the onset and development of diabetic nephropathy (DN). Histone deacetylases (HDACs) have been recently proved to play critical roles in the pathogenesis of DN. As one subtype of the class IIa HDACs, HDAC9 is capable to repress/de-repress their target genes in tumor, inflammation, atherosclerosis and metabolic diseases. In the present study, we investigate w...
متن کاملBlood pressure and glucose independent renoprotective effects of dipeptidyl peptidase-4 inhibition in a mouse model of type-2 diabetic nephropathy.
BACKGROUND Despite the beneficial effects of type 4 dipeptidyl peptidase (DPP-4) inhibitors on glucose levels, its effects on diabetic nephropathy remain unclear. METHOD This study examined the long-term renoprotective effects of DPP-4 inhibitor linagliptin in db/db mice, a model of type 2 diabetes. Results were compared with the known beneficial effects of renin-angiotensin system blockade b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 305 6 شماره
صفحات -
تاریخ انتشار 2013